
Supplementary Information 
1. The conversion efficiency and mode purity of SPP, VWP and VVP 

The common way to generate a LG mode is to add the spiral phase to a Gaussian mode using a q-

plate, a SPP, and so on (i.e., the extracavity configuration) 51. The generated mode can be expressed 

as 
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In comparison to the standard LG mode  
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one can see that the necessary amplitude term to define a pure LG mode is missing in Eq. (S1). 

Therefore, directly adding a spiral phase to the Gaussian mode as in Eq. (S1) will generate a 

superposition of various higher-order LG modes rather than a pure LG mode 37, 52, 53.  

For a SPP, its conversion efficiency corresponds to the directly generated mode (Eq. (S1)), while 

the mode purity is the ratio of a pure LG(l, 0) mode (Eq. (S2)) to the directly generated mode (Eq. 

(S1)). Table S1 shows the conversion efficiencies of commercial SPPs (data obtained from the 

website of the companies) and the measured mode purities under extra-cavity configuration by using 

the standard modal decomposition method 14, 37. Figure S1 shows the output patterns under 

extracavity and intracavity configurations. 

Table S1 | Comparisons of various commercial spatial phase plates 

Components and Target 

 LG(l, p) mode 

Spiral phase 

plate (l=1) 

LG(1, 0) 

Zero-order vortex 

half-wave 

retarders (l=1) 

LG(1, 0) 

Vector vortex  

Waveplates 

l=1, 2, 4 

LG(1, 0) 

 

LG(2, 0) 

 

LG(4, 0) 

 

Manufacturer  HOLO/OR Ltd.   Thorlabs Inc. BEAM Co. 

Conversion efficiency 

(provided by manufacturer) 
>95% >97% >95% >95% >95% 

Mode purity  <80% [Ref. S3]  <80% [Ref. S5]  86% 84% 72% 

 

 



 

Fig. S1 | Mode pattern under (a) extracavity configuration (obtained from Thorlabs Inc., 

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9098) and (b) intracavity 

configuration. Here, l = 4 for both patterns. 

 

2. The dependence of output signal wavelength on PPLN channel and temperature. 

A traditional optical parametric oscillator (OPO) using a PPLN crystal converts a pump wave into 

a signal wave and an idle wave. The three waves satisfy the energy conservation, i.e., p s i  = + , 

where p , s , and i  refer to the frequencies of the pump, signal, and idle waves, respectively. 

By changing the temperature and channel of the PPLN crystal, s and i  can be tunable due to 

the momentum conservation condition 0p s ik k k G− − − =  , where 
pk  , sk  , and ik  refer to the 

wave vectors of the pump, signal, and idle waves, respectively 31, 54. G is the first-order reciprocal 

vector provided by the PPLN crystal. In our experimental setup, the PPLN crystal has ten channels. 

We use four channels with periods of 31.02 μm, 30.49 μm, 29.98 μm, and 29.52 μm, respectively, 

as shown in Fig. S2. Under the pump wavelength of 1064 nm, the output signal wavelengths can be 

tuned from 1480 nm to 1650 nm in the temperature ranging from 25℃ to 138℃ (Fig. S3). 

 



 

Fig. S2 | Schematic image of four channels in the PPLN crystal. The periods are 31.02 μm, 30.49 

μm, 29.98 μm, and 29.52 μm, corresponding to Channel 1, 2, 3, and 4, respectively.  

 

 

Fig. S3 | The dependence of output signal wavelength on PPLN channel and temperature. 

 

3. Mathematical analysis of Janus OPO  

 

Fig. S4 | The Janus cavity design. 

 



The Janus cavity mode features two faces, i.e., a Gaussian-shape profile near the input coupler and 

a single high-purity LG(l, p = 0) mode on the output coupler, as shown in Fig. S4. The l index is 

determined by VVW. In the following, we will mathematically analyze the Janus cavity design.  

In order to simplify the process, the cavity is divided into Part Ⅰ (from the input coupler to 

VVW) and Part Ⅱ (from VVW to the output coupler). Since the target is to output a pure LG mode, 

we assume only a single LG(l, 0) mode at the output coupler. Its propagation is generally defined 

by  
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Here, λ is wavelength, ω0 is the beam waist, r and φ are the radial and azimuthal coordinates, 

respectively, w(z) is the beam size, R(z) is the radius of curvature, and ψ(z) is the Gouy phase. 

It should be noted that the imaging system in Janus cavity will introduce an additional 

diverging curvature into the cavity mode. To guarantee the cavity self-consistency, the evolving 

curvature of the LG mode should be coincident with the mirror surface at the output coupler 55. 

Taking into account the additional curvature from the imaging system, we assume that the beam 

waist of the LG mode in Part II is at a distance of L+ LB relative to output coupler. Then, one can 

obtain the curvature radius of the output coupler ROC 
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When the LG beam in Part II passes through VVW, the spiral phase is cancelled and the 

generated beam can be expressed as LG(l,0)exp(ilφ), i.e., 
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Notably, the beam in Eq. (S5) is quite close to a hollow-Gaussian beam 50, which will evolve to a 

Gaussian-like beam after a certain propagation distance. 

In our design, Part I is an imaging system. The input coupler with a curvature of RIC is 

equivalent to a lens with a focusing length of f = RIC/2. In our experiment, we employ a symmetric 

imaging system, in which VVW is placed at curvature center of the input coupler. Therefore, after 

the beam defined by Eq. (S5) is reflected by the input coupler, its image field can be written as  
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Substituting Eq. (S7) into Eq. (S6), one can get  
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The cavity reversible condition requires  

( ) ( ), ,IU u v U u v= ,                             (S9) 

By substituting Eqs. (S5) and (S9) into Eq. (S8) and considering r2 = u2 + v2, one can obtain  
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Based on Eqs. (S4) and (S10), one can solve the necessary parameters ω0 and L to determine the 

Janus cavity mode.  

 

4. Janus cavity mode simulation 

 

Fig. S5 | One round trip in Janus cavity. The transmittance functions of the used optical 

components are shown. In our experiment, RIC =75 mm, ROC = 125 mm, and LB =55 mm. 

 

The numerical simulation is carried out using Fox-Li iterative procedure. Figure S5 shows one 

round trip in Janus cavity. The propagation between the optical components is calculated by the 

angular spectrum theory 56.  

Based on the Fox-Li method, we simulate the Janus cavity mode with VVWs of q = 0.5, 1, and 

2, which can generate LG(1,0), LG(2,0), and LG(4,0) modes, respectively. The one-round-trip 

transitions of Janus cavity mode are shown in Fig. S6. The symmetric imaging system facilitates the 

cavity mode to smoothly evolve from a Gaussian profile to an LG profile, and vice versa, without 

breaking the cavity mode reversibility. The simulated output modes show the intensity and phase of 



the LG mode can be well reconstructed after a round trip inside the Janus cavity. Notably, the 

imaging system introduces a diverging curvature, which is taken into account in the self-

reproductive Janus cavity mode (See Supplementary Note 3). In addition, the measured beam sizes 

are well consistent with the theoretical and simulated values as shown in Table S2. One can perform 

similar calculations to analyze the cavity mode without an imaging system (Fig. 1d of the main text). 

 

 

Fig. S6 | One-round-trip mode conversions inside Janus cavity for generating LG(1,0), LG(2,0), 

and LG(4,0) modes, respectively.  

 

Table S2 | Comparison of beam sizes in experimental, theoretical, and simulating results. 

 
Output beam sizes at a far-field distance of d from the output coupler  

l =±1, d =110 mm l =±2, d = 90 mm l =±4, d =40 mm 

Experimental results 2.27 mm 3.19 mm 3.34 mm 

Theoretical results 2.39 mm 3.09 mm 3.35 mm 

Simulating results  2.37 mm 3.03 mm 3.35 mm 

 

Figure S7 show that the intensity profiles for pump mode and various TC orders inside the 

crystal. In principle, to guarantee an ideal Janus cavity mode for different VVWs, the pump beam 

should be re-optimized to match the intensity profile for a particular TC at the input coupler. 

However, by using a 200 μm pump beam size in our experiment, the mode purity and conversion 

efficiency slightly changes as the TC varies from 1 to 4. It should be noted that the cavity parameters 

need to be re-optimized if the TC becomes far away from this range. 

 



 

Fig. S7 | (a) The experimental intensity pattern of pump mode; (b-d) Simulated Gaussian-like 

modes corresponding to the outputs of LG(1,0), LG(2,0) and LG(4,0) modes, respectively. 

 

5. Working principle of VVW and reversible polarization conversion  

A VVW can be seen as a spatially variant half-wave plate, whose optical axis rotates 

continuously around a singularity point. Its transmissivity is up to 95% covering wavelengths from 

1500 nm to 1600 nm. The orientation of its fast axis can be expressed as:  

( ) 0=q   + ,                             (S11)          

where φ is the variant azimuthal angle, φ0 is the orientation of the fast axis at φ = 0 and q is a constant 

with its value of being positive multiple of 1/2. Its Jones Matrix can be written as: 
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When a circularly polarized beam passes through the VVW, the following transformation happens 

57, 
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where L and R refer to the left-circularly-polarized (LCP) and right-circularly-polarized (RCP) 

states, respectively. From Eq. (S13), we can see that a LCP (or RCP) state with TC of l0 passing 

through the VVW will become a RCP (or LCP) state with TC of l0+2q (or l0-2q). When a l0 = 0 input 

state is used, the TC will be controlled by the 2q value of the VVW, i.e. l = 2q, and the handedness 

of the incident circularly-polarized beam.  

In the experiment, a broadband quarter-wave plate (QWP) is used to convert the generated 

linearly-polarized signal wave into a circularly-polarized one. The Jones matrix of QWP can be 

expressed as 
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where β and β0 is the orientation angle of the fast axis of QWP and the polarization angle of the 

signal wave, respectively. Consider that a light beam propagates forward through QWP and VVW, 

is reflected by the output coupler, and then propagates backward through VVW and QWP. The 

process can be expressed by,  
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Jm is the Jones Matrix describing the mirror reflection, which is given by 

1 0
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Note that the right-hand coordinate system requires the azimuthal angle to change its sign when the 

light wave propagates backward.  

It requires β - β0 = ±45° for transforming a linearly-polarized state into a circularly-polarized 

state. So one can obtain from Eq. (S15) that the polarization is rotated by ±90° after the light passes 

through QWP and VVW forward and backward. We use a Faraday rotator (FR) to compensate the 

±90° polarization rotation so that the total polarization conversion process is reversible as shown in 

Fig. S8.   

 



 

Fig. S8 | Polarization and mode conversions inside the Janus OPO cavity for outputs of (a) right-

circularly-polarized LG(2q,0) mode and (b) left-circularly-polarized LG(-2q,0) mode. The value of 

q is positive multiple of 1/2. The solid arrows indicate the polarization while the dash arrows show 

the propagation directions.  

 

6. Modal analysis process.  

Modal decomposition using digital holograms is a common way to characterize the spatial 

beams 37. Because all the LG
p 

l  modes construct a complete and orthonormal basis, the spatial mode 

U(x, y) can be expanded into the coherent superposition of LG
p 

l  modes: 
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Here, cp 

l  is the weighting coefficient, which can be calculated from 

    ( ) ( ) ( ) ( )=p p p

l l lc LG x,y U x,y U x,y LG x,y dxdy


=  .              (S18) 

LG
p 

l (x, y)* is the complex conjugate of LG
p 

l (x, y). To simplify the calculation, we apply a Fourier 

transform on U(x, y)·•LG
p 

l (x, y)*,  

   ( ) ( ) ( ) ( )= p

k x y l x yU k ,k U x,y LG x,y exp i k x k y dxdy
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where the kx and ky are the wave vectors. Then, the on-axis optical field in the Fourier plane is given 



by  

             ( ) ( ) ( )0 0 = p

k lU , U x,y LG x,y dxdy


 .                        (S20) 

Therefore, by measuring the intensity of Uk(0,0) , the power weighting of the corresponding LG
p 

l  

component can be determined by  

                     ( )
2 2

= 0 0p

l kc U , .                            (S21) 

Equation (S21) provides a practical way to determine the mode purity of the spatial mode.  

In the experiment, we use a reflective phase-only spatial light modulator (SLM, GAEA-2 -

TELCO, HOLOEYE Corporation) to perform the modal analysis. We use the type-3 method of 

complex-amplitude modulation reported by Arrizon et al. to program the phase-only computer-

generated holograms (CGH) 58. A spatial carrier frequency is added into the CGH so that the 1st 

order diffraction beam (which reconstructs the conjugate of the tested LG
p 

l  component) is separated 

from the undesired modes in the Fourier plane.  

Figure S9 shows the schematic setup for the modal decomposition. Because the SLM is only 

valid for linearly-polarized light, we turn the output circularly-polarized LG mode into a linearly-

polarized one by using a QWP. Then it passes through a 1:1 beam splitter (BS) and is incident on 

the SLM. The light field reflected at SLM and BS in sequence carries the information of

( ) ( )p

lU x,y LG x,y

, which is focused by a 75 mm lens to perform the Fourier transform. At the 

Fourier plane, the first-diffraction-order beam reconstructs the field ( )k x yU k ,k , which is picked 

out through an iris and is imaged on the laser beam profiler by a 50X objective. By recording the 

central intensity of the image, the power weighting is achieved. In the experiment, we measure the 

modal distribution of the generated
0

1LG  beam by loading a group of 
p

lLG 
 modes with p varying 

from 0 to 4 and l varying from 0 to 2, onto the SLM.  

 



 

Fig. S9 | The schematic setup for modal decomposition. 

 

7. The influences of cavity collimation and cavity length on mode purities 

In our configuration, the singularity of VVW should collimate with the optical axis of two-

mirror cavity to ensure generation of high-purity LG modes. Figure S10 shows the influence of 

misalignment on the mode purity of LG(1,0) mode based on numerical simulation. As the singularity 

of VVW moves away from the optical axis, the output LG(1,0) mode distorts with a reduce in mode 

purity and finally evolves into a Gaussian mode. In experiment, the VVW is fixed on a manual 

translation stages with the accuracy of 10 μm to guarantee precise collimation.    

The cavity length L should satisfy the stability condition of ( )( )1 20 1 1 1L R L R − −   , 

where R1 and R2 are the curvature radius of the mirrors, so that its accuracy depends on the value of 

R1 and R2 in centimeter scale 48. However, one should note that the cavity length will change the 

spot size of signal Gaussian-like modes in the PPLN crystal.  

 



  

Fig. S10 | The modal weighting of LG(1,0) dependence on the distance between the singularity 

of VVW and the optical axis. Insets are the output intensity patterns corresponding to certain 

distances. 

 

8. The linewidth of output LG mode 

Figure S11 shows the measured linewidth of the pump and the output signal modes, in which 

the full width at half maximum (FWHM) are of 5 nm for the pump mode and 1.4 nm for the signal 

mode, respectively. Replacing with a CW pump laser, it is possible to generate narrow-linewidth 

LG modes that could be used to investigate spin-orbital coupling with various atoms in quantum 

applications. 

 
Fig. S11 spectra of (a) the pump mode and (b) the signal mode centered at 1550 nm . 

 

 

 


